Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Fungal Genet Biol ; : 103896, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663635

RESUMO

Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.

2.
Food Chem X ; 22: 101366, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623508

RESUMO

The mitochondrial calcium uniporter (MCU) occupies a noteworthy position in the regulation of mitochondrial calcium uptake. This study investigated the effects of MCU modulator-mediated mitochondrial calcium on mitochondrial dysfunction, oxidative stress, endogenous enzyme activities, and tenderness during postmortem aging. Spermine, as an activator of MCU, resulted in an increase in mitochondrial calcium levels, not only disrupting mitochondrial morphology but also triggering mitochondrial oxidative stress and downregulation of antioxidant factors. Additionally, the spermine group underwent later activation of calpain and earlier activation of caspases, as well as the myofibril fragmentation index was initially lower and then higher compared with control group, indicating that endogenous enzymes played an indispensable role in different aging periods. Interestingly, the results of the Ru360 (an inhibitor of MCU) group were opposite to those aforementioned findings. Our data provide a novel perspective on the regulatory mechanism of mitochondrial calcium homeostasis mediated by MCU on tenderness.

3.
Cell Calcium ; 120: 102884, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574509

RESUMO

Pancreatic and duodenal homeobox 1 (PDX1) is a transcription factor required for the development and differentiation of the pancreas. Previous studies indicated that PDX1 expression was restricted to the gastrointestinal tract. Using a cre-dependent reporter, we observed PDX1-dependent expression of tdtomato (PDX1-tom) in a subpopulation of sensory nerves. Many of these PDX1-tom afferents expressed the neurofilament 200 protein and projected to the skin. Tdtomato-labeled terminals were associated with hair follicles in the form of longitudinal and circumferential lanceolate endings suggesting a role in tactile and proprioceptive perception. To begin to examine the functional significance of PDX1 in afferents, we used Fura-2 imaging to examine calcium (Ca2+) handling under naïve and nerve injury conditions. Neuropathic injury is associated with increased intracellular Ca2+ signaling that in part results from dysregulation of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA). Here we demonstrate that under naïve conditions, PDX1 regulates expression of the SERCA2B isoform in sensory neurons. In response to infraorbital nerve injury, a significant reduction of PDX1 and SERCA2B expression and dysregulation of Ca2+ handling occurs in PDX1-tom trigeminal ganglia neurons. The identification of PDX1 expression in the somatosensory system and its regulation of SERCA2B and Ca2+ handling provide a new mechanism to explain pathological changes in primary afferents that may contribute to pain associated with nerve injury.

4.
J Histochem Cytochem ; 72(4): 199-231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590114

RESUMO

The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.


Assuntos
Doenças do Sistema Nervoso , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Barreira Hematoencefálica , Células Endoteliais/metabolismo , Canais de Cátion TRPV
5.
Biomed Pharmacother ; 174: 116428, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599056

RESUMO

Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.

6.
Eur J Endocrinol ; 190(4): 296-306, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561929

RESUMO

OBJECTIVE: The calcium-sensing receptor (CASR) gene encodes a G protein-coupled receptor crucial for calcium homeostasis. Gain-of-function CASR variants result in hypocalcemia, while loss-of-function variants lead to hypercalcemia. This study aims to assess the functional consequences of the novel nonsense CASR variant [c.2897_2898insCTGA, p.(Gln967*) (Q967*)] identified in adolescent patient with chronic hypocalcemia, a phenotype expected for a gain-of-function variants. DESIGN AND METHODS: To functionally characterize the Q967* mutant receptor, both wild-type (WT) and mutant CASR were transiently transfected into HEK293T cells and calcium-sensing receptor (CaSR) protein expression and functions were comparatively evaluated using multiple read-outs. RESULTS: Western blot analysis revealed that the CaSR mutant protein displayed a lower molecular weight compared with the WT, consistent with the loss of the last 122 amino acids in the intracellular domain. Mitogen-activated protein kinase activation and serum responsive element luciferase assays demonstrated that the mutant receptor had higher baseline activity than the WT. Extracellular-signal-regulated kinase/c-Jun N-terminal kinase phosphorylation, however, remained consistently high in the mutant, without significant modulations following exposure to increasing extracellular calcium (Ca2+o) levels, suggesting that the mutant receptor is more sensitive to Ca2+o compared with the WT. CONCLUSIONS: This study provides functional validation of the pathogenicity of a novel nonsense CASR variant, resulting in an abnormally hyperfunctioning protein consistent with the patient's phenotype. Functional analyses indicate that mutant receptor is constitutively active and poorly sensitive to increasing concentrations of extracellular calcium, suggesting that the cytoplasmic tail may contain elements regulating signal transduction.


Assuntos
Hipercalcemia , Hipocalcemia , Adolescente , Humanos , Hipocalcemia/genética , Cálcio , Receptores de Detecção de Cálcio/genética , Células HEK293 , Hipercalcemia/genética , Mutação/genética
7.
Adv Sci (Weinh) ; : e2306498, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476116

RESUMO

Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+ ]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+ ]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.

8.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479316

RESUMO

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Assuntos
Brassica , Plântula , Clorofila/metabolismo , Carbono/metabolismo , Fluorescência , Fotossíntese , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo
9.
Front Cell Dev Biol ; 12: 1339292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533084

RESUMO

LncRNA-based control affects cardiac pathophysiologies like myocardial infarction, coronary artery disease, hypertrophy, and myotonic muscular dystrophy. This study used a gene-break transposon (GBT) to screen zebrafish (Danio rerio) for insertional mutagenesis. We identified three insertional mutants where the GBT captured a cardiac gene. One of the adult viable GBT mutants had bradycardia (heart arrhythmia) and enlarged cardiac chambers or hypertrophy; we named it "bigheart." Bigheart mutant insertion maps to grin2bb or N-methyl D-aspartate receptor (NMDAR2B) gene intron 2 in reverse orientation. Rapid amplification of adjacent cDNA ends analysis suggested a new insertion site transcript in the intron 2 of grin2bb. Analysis of the RNA sequencing of wild-type zebrafish heart chambers revealed a possible new transcript at the insertion site. As this putative lncRNA transcript satisfies the canonical signatures, we called this transcript grin2bb associated RNA transcript (grin2bbART). Using in situ hybridization, we confirmed localized grin2bbART expression in the heart, central nervous system, and muscles in the developing embryos and wild-type adult zebrafish atrium and bulbus arteriosus. The bigheart mutant had reduced Grin2bbART expression. We showed that bigheart gene trap insertion excision reversed cardiac-specific arrhythmia and atrial hypertrophy and restored grin2bbART expression. Morpholino-mediated antisense downregulation of grin2bbART in wild-type zebrafish embryos mimicked bigheart mutants; this suggests grin2bbART is linked to bigheart. Cardiovascular tissues use Grin2bb as a calcium-permeable ion channel. Calcium imaging experiments performed on bigheart mutants indicated calcium mishandling in the heart. The bigheart cardiac transcriptome showed differential expression of calcium homeostasis, cardiac remodeling, and contraction genes. Western blot analysis highlighted Camk2d1 and Hdac1 overexpression. We propose that altered calcium activity due to disruption of grin2bbART, a putative lncRNA in bigheart, altered the Camk2d-Hdac pathway, causing heart arrhythmia and hypertrophy in zebrafish.

10.
Insect Mol Biol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545681

RESUMO

The silkworm, Bombyx mori, is a complete metamorphosed economic insect, and the silk gland is a significant organ for silk protein synthesis and secretion. The silk gland completely degenerates during pupation, but the regulatory mechanism of programmed cell death (PCD) has not yet been understood. In the present study, we investigated the non-genetic pathway of 20E-induced PCD in the posterior silk gland (PSG) based on intracellular Ca2+ levels. Silk gland morphology and silk gland index indicated rapid degeneration of silk gland during metamorphosis from mature silkworm (MS) to pupal day 1 (P1), and Ca2+ levels within the PSG were found to peak during the pre-pupal day 1 (PP1) stage. Moreover, the results of autophagy and apoptosis levels within the PSG showed that autophagy was significantly increased in MS-PP1 periods, and significantly decreased in PP2 and P1 periods. Apoptosis was almost absent in MS-PP1 periods and significantly increased in PP2 and P1 periods. Additionally, western blotting results showed that autophagy preceded apoptosis, and the autophagy-promoting ATG5 was cleaved by calpain to the autophagy-inhibiting and apoptosis-promoting NtATG5 since PP1 period, while decreased autophagy was accompanied by increased apoptosis. Collectively, these findings suggest that Ca2+ is a key factor in the shift from autophagy to apoptosis.

11.
Cancer Cell Int ; 24(1): 111, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528582

RESUMO

BACKGROUND: Gastric cancer is currently estimated to be the fifth leading common cancer in the world, and responsible for about one million new cases and an estimated 769,000 cancer-related deaths each year. WFDC21P is long non-coding RNA and has been reported to play critical roles in serval types of cancer. Our research aims to investigate the biological effects and molecular mechanism of WFDC21P in gastric cancer. METHODS: Datasets (GSE53137, GSE58828, and GSE109476) in GEO database were used to screen differential expressed lncRNAs in gastric cancer by online GEO2R analysis tool. Quantitative RT-PCR was used to verify the above prediction in ten pairs of gastric cancer and corresponding paracancerous tissues. Pan-cancer analysis was used to analyze the expression of WFDC21P in different types of cancer. Small interfering RNAs were used to WFDC21P knockdown. CCK-8 and colony formation assays were used to measure the proliferation and tumorigenesis abilities. Wound healing and Transwell assay were used to detect the migration and invasion abilities. Proteins that interact with WFDC21P were predicted by catRAPID database. RNA pull down and RNA Immunoprecipitation were used to confirm the interaction. Western blotting was used to detect the key proteins level in calcium homeostasis signaling pathway. Loss-of-function and rescue assays were used to evaluate the biological function of SEC63 at the background of WFDC21P silencing. RESULTS: WFDC21P was upregulated in gastric cancer tissues and cell lines. WFDC21P downregulation suppressed proliferation, tumorigenesis, migration, invasion, and promoted apoptosis in gastric cancer. SEC63 protein had the capability to bind with WFDC21P and the expression of SEC63 was regulated by WFDC21P. SEC63 was also upregulated in gastric cancer and exerted effects during tumor growth and metastasis. CONCLUSIONS: This study confirmed that lncRNA WFDC21P aggravated gastric cancer malignant behaviors by interacting with SEC63 to regulate the calcium homeostasis signaling pathway.

12.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542170

RESUMO

The communication between mitochondria and the endoplasmic reticulum (ER) is facilitated by a dynamic membrane structure formed by protein complexes known as mitochondria-associated membranes (MAMs). The structural and functional integrity of MAMs is crucial for insulin signal transduction, relying heavily on their regulation of intracellular calcium homeostasis, lipid homeostasis, mitochondrial quality control, and endoplasmic reticulum stress (ERS). This article reviews recent research findings, suggesting that exercise may promote the remodeling of MAMs structure and function by modulating the expression of molecules associated with their structure and function. This, in turn, restores cellular homeostasis and ultimately contributes to the amelioration of insulin resistance (IR). These insights provide additional possibilities for the study and treatment of insulin resistance-related metabolic disorders such as obesity, diabetes, fatty liver, and atherosclerosis.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , 60482 , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Estresse do Retículo Endoplasmático/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 326(4): H950-H970, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334967

RESUMO

Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.


Assuntos
Sinalização do Cálcio , Músculo Liso Vascular , Feminino , Masculino , Humanos , Sinalização do Cálcio/fisiologia , Músculo Liso Vascular/metabolismo , Cálcio/metabolismo , Androgênios/metabolismo , Estrogênios/metabolismo , Caracteres Sexuais , Células Endoteliais/metabolismo , Cafeína/farmacologia , Miócitos de Músculo Liso/metabolismo
14.
Exp Neurol ; 375: 114738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395217

RESUMO

BACKGROUND: Neuroinflammation assumes a pivotal role in both the etiological underpinnings and the dynamic progression of sepsis-associated encephalopathy (SAE). The occurrence of cognitive deficits with SAE is associated with neuroinflammation. 4-phenyl butyrate (4-PBA) may control inflammation by inhibiting endoplasmic reticulum stress (ERS). The primary objective of this investigation is to scrutinize the effectiveness of 4-PBA in mitigating neuroinflammation induced by lipopolysaccharides (LPS) and its consequent impact on cognitive function decline. METHODS: LPS-injected mice with SAE and LPS-treated BV2 cell were established to serve as experimental paradigms, both contributing to the investigative framework of the study. Cognitive functions were assessed by behavioral tests. Hippocampal neuronal damage was assessed using Golgi staining and Nissl staining. Quantitative PCR assay and immunofluorescence were used to analyze neuroinflammation. Mitochondrial function was examined using transmission electron microscopy. Protein expression analysis was conducted through the application of western blotting methodology, serving as the investigative approach to elucidate molecular signatures in the experimental framework. Endoplasmic reticulum and mitochondrial calcium flow were detected using flow cytometry. To delve deeper into the mechanistic intricacies, the administration of 4µ8c was employed to selectively impede the IRE1α/Xbp1s pathway, constituting a strategic intervention aimed at elucidating underlying regulatory processes. RESULT: Expression levels of ERS-related proteins exhibited a significant upregulation in hippocampal tissues of LPS-treated mice when compared to wild-type (WT) counterparts. The administration of 4-PBA notably ameliorated memory deficits in LPS-treated mice. Furthermore, 4-PBA treatment was found to alleviate oxidative stress and neuroinflammation. Mechanistically, the IRE1α/Xbp1s-Ca2+ signaling pathway played a crucial role in mediating the beneficial effects of mitigating oxidative stress and maintaining mitochondrial calcium homeostasis, with inhibition of the IRE-related pathway displaying opposing effects. CONCLUSION: Our results suggest that administration of 4-PBA treatment significantly attenuates ERS, alleviates cognitive decline, reduces inflammatory damage, and restores mitochondrial dynamics via the IRE1α/Xbp1s-Ca2+-associated pathway, which provides a new potential therapeutic approach to SAE.


Assuntos
Butilaminas , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Cálcio , Endorribonucleases , Proteínas Serina-Treonina Quinases , Sepse/complicações , Encéfalo
15.
Heart Rhythm ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38395244

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a major risk factor for atrial structural remodeling and atrial fibrillation (AF). Calpain activity is hypothesized to promote atrial remodeling and AF. OBJECTIVE: The purpose of this study was to investigate the role of calpain in diabetes-associated AF, fibrosis, and calcium handling dysfunction. METHODS: DM-associated AF was induced in wild-type (WT) mice and in mice overexpressing the calpain inhibitor calpastatin (CAST-OE) using high-fat diet feeding followed by low-dose streptozotocin injection (75 mg/kg). DM and AF outcomes were assessed by measuring blood glucose levels, fibrosis, and AF susceptibility during transesophageal atrial pacing. Intracellular Ca2+ transients, spontaneous Ca2+ release events, and intracellular T-tubule membranes were measured by in situ confocal microscopy. RESULTS: WT mice with DM had significant hyperglycemia, atrial fibrosis, and AF susceptibility with increased atrial myocyte calpain activity and Ca2+ handling dysfunction relative to control treated animals. CAST-OE mice with DM had a similar level of hyperglycemia as diabetic WT littermates but lacked significant atrial fibrosis and AF susceptibility. DM-induced atrial calpain activity and downregulation of the calpain substrate junctophilin-2 were prevented by CAST-OE. Atrial myocytes of diabetic CAST-OE mice exhibited improved T-tubule membrane organization, Ca2+ handling, and reduced spontaneous Ca2+ release events compared to littermate controls. CONCLUSION: This study confirmed that DM promotes calpain activation, atrial fibrosis, and AF in mice. CAST-OE effectively inhibits DM-induced calpain activation and reduces atrial remodeling and AF incidence through improved intracellular Ca2+ homeostasis. Our results support calpain inhibition as a potential therapy for preventing and treating AF in DM patients.

16.
Front Pharmacol ; 15: 1323491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420191

RESUMO

Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38417038

RESUMO

Background: Use of combined oral contraceptives (COCs) has been found to increase serum 25-hydroxyvitamin D [25(OH)D] but effects on calcium and bone homeostasis are unclear. Materials and Methods: Serum 25(OH)D, parathyroid hormone (PTH), alkaline phosphatase (ALK) and estradiol, dietary intake of bone-related nutrients and foods, bone mineral density (BMD), and body fat were compared in adult women (20-35 years; body mass index 21.5 ± 2.3 kg/m2) users (+COC, n = 32) and nonusers (-COC, n = 20) of COC. Biochemical markers were measured by automated assays. BMD at total body (TB), lumbar spine (LS), femoral neck (FN) and trochanter (TR), and body fat, were measured by dual-energy X-ray absorptiometry. Dietary intake was assessed by a food frequency questionnaire. Results: Intake of calcium, dairy foods, and fruits and vegetables, were adequate and did not differ by COC. Mean 25(OH)D was 35% higher in +COC (110.4 ± 27.3 nmol/L, 44.2 ± 1.8 ng/mL) compared with -COC (81.7 ± 22.8 nmol/L, 32.7 ± 2.3 ng/mL; p < 0.001). Mean PTH, ALK, and estradiol were 28%, 12%, and 62% lower, respectively, in +COC compared with -COC (p ≤ 0.05). Mean BMD z-scores (all sites) were adequate and did not differ by COC. There were no correlations between 25(OH)D and dietary, biochemical, and body composition variables. PTH was inversely correlated with TR-BMD z-score in -COC (r = -0.47; p = 0.04), and ALK was inversely correlated with TB-, TR-, and LS-BMD z-scores in -COC (r ≤ -0.43; p ≤ 0.04), but not in +COC. Conclusions: Increased serum 25(OH)D with COC use was paralleled by expected physiologic adjustments in calcium and bone homeostasis, and adequate bone mass status, in nonobese young adult women consuming bone-healthy diets.

18.
Int J Biol Sci ; 20(2): 680-700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169582

RESUMO

Vascular remodeling plays a vital role in hypertensive diseases and is an important target for hypertension treatment. Irisin, a newly discovered myokine and adipokine, has been found to have beneficial effects on various cardiovascular diseases. However, the pharmacological effect of irisin in antagonizing hypertension-induced vascular remodeling is not well understood. In the present study, we investigated the protection and mechanisms of irisin against hypertension and vascular remodeling induced by angiotensin II (Ang II). Adult male mice of wild-type, FNDC5 (irisin-precursor) knockout, and FNDC5 overexpression were used to develop hypertension by challenging them with Ang II subcutaneously in the back using a microosmotic pump for 4 weeks. Similar to the attenuation of irisin on Ang II-induced VSMCs remodeling, endogenous FNDC5 ablation exacerbated, and exogenous FNDC5 overexpression alleviated Ang II-induced hypertension and vascular remodeling. Aortic RNA sequencing showed that irisin deficiency exacerbated intracellular calcium imbalance and increased vasoconstriction, which was parallel to the deterioration in both ER calcium dysmetabolism and ER stress. FNDC5 overexpression/exogenous irisin supplementation protected VSMCs from Ang II-induced remodeling by improving endoplasmic reticulum (ER) homeostasis. This improvement includes inhibiting Ca2+ release from the ER and promoting the re-absorption of Ca2+ into the ER, thus relieving Ca2+-dependent ER stress. Furthermore, irisin was confirmed to bind to its receptors, αV/ß5 integrins, to further activate the AMPK pathway and inhibit the p38 pathway, leading to vasoprotection in Ang II-insulted VSMCs. These results indicate that irisin protects against hypertension and vascular remodeling in Ang II-challenged mice by restoring calcium homeostasis and attenuating ER stress in VSMCs via activating AMPK and suppressing p38 signaling.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Masculino , Animais , Angiotensina II/metabolismo , Fibronectinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Remodelação Vascular , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Estresse do Retículo Endoplasmático
19.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293127

RESUMO

Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.

20.
Biochem Biophys Res Commun ; 699: 149561, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280307

RESUMO

In mouse B lymphocytes, an unidentified slow-activating voltage-dependent current resembling the characteristics of the Calhm family ion channel (ICalhm-L) was investigated. RT-PCR analysis revealed the presence of Calhm2 and 6 transcripts, with subsequent whole-cell patch-clamp studies indicating that the ICalhm-L is augmented by heat, alkaline pH, and low extracellular [Ca2+]. Overexpression of Calhm2, but not Calhm6, in N2A cells recapitulated ICalhm-L. Moreover, Calhm2 knockdown in Bal-17 cells abolished ICalhm-L. We firstly identify the voltage-dependent ion channel function of the Calhm2 in the mouse immune cells. ATP release assays in primary mouse B cells suggested a significant contribution of Calhm2 for purinergic signaling at physiological temperature.


Assuntos
Cálcio , Canais Iônicos , Camundongos , Animais , Cálcio/metabolismo , Transdução de Sinais , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...